Bin packing and covering with longest items at the bottom: online version
نویسندگان
چکیده
منابع مشابه
Online Multi-dimensional Dynamic Bin Packing of Unit-Fraction Items
We study the 2-D and 3-D dynamic bin packing problem, in which items arrive and depart at arbitrary times. The 1-D problem was first studied by Coffman, Garey, and Johnson motivated by the dynamic storage problem. Bar-Noy et al. have studied packing of unit fraction items (i.e., items with length 1/k for some integer k ≥ 1), motivated by the window scheduling problem. In this paper, we extend t...
متن کاملOnline LIB problems: Heuristics for Bin Covering and lower bounds for Bin Packing
We consider the NP Hard problems of online Bin Covering and Packing while requiring that larger (or longer, in the one dimensional case) items be placed at the bottom of the bins, below smaller (or shorter) items — we call such a version, the LIB version of problems. Bin sizes can be uniform or variable. We look at computational studies for both the Best Fit and Harmonic Fit algorithms for unif...
متن کاملOnline Colored Bin Packing
In the Colored Bin Packing problem a sequence of items of sizes up to 1 arrives to be packed into bins of unit capacity. Each item has one of c ≥ 2 colors and an additional constraint is that we cannot pack two items of the same color next to each other in the same bin. The objective is to minimize the number of bins. In the important special case when all items have size zero, we characterize ...
متن کاملOnline Stochastic Bin Packing
Motivated by the problem of packing Virtual Machines on physical servers in the cloud, we study the problem of one-dimensional online stochastic bin packing. Items with sizes sampled independent and identically (i.i.d.) from a distribution with integral support arrive as a stream and must be packed on arrival in bins of size B, also an integer. The size of an item is known when it arrives and t...
متن کاملDynamic Bin Packing of Unit Fractions Items
This paper studies the dynamic bin packing problem, in which items arrive and depart at arbitrary time. We want to pack a sequence of unit fractions items (i.e., items with sizes 1/w for some integer w ≥ 1) into unit-size bins such that the maximum number of bins used over all time is minimized. Tight and almost-tight performance bounds are found for the family of any-fit algorithms, including ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANZIAM Journal
سال: 2002
ISSN: 1445-8810
DOI: 10.21914/anziamj.v43i0.470